Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
J Intern Med ; 290(3): 677-692, 2021 09.
Article in English | MEDLINE | ID: covidwho-1255442

ABSTRACT

BACKGROUND: Prognostic markers for disease severity and identification of therapeutic targets in COVID-19 are urgently needed. We have studied innate and adaptive immunity on protein and transcriptomic level in COVID-19 patients with different disease severity at admission and longitudinally during hospitalization. METHODS: Peripheral blood mononuclear cells (PBMCs) were collected at three time points from 31 patients included in the Norwegian SARS-CoV-2 cohort study and analysed by flow cytometry and RNA sequencing. Patients were grouped as either mild/moderate (n = 14), severe (n = 11) or critical (n = 6) disease in accordance with WHO guidelines and compared with patients with SARS-CoV-2-negative bacterial sepsis (n = 5) and healthy controls (n = 10). RESULTS: COVID-19 severity was characterized by decreased interleukin 7 receptor alpha chain (CD127) expression in naïve CD4 and CD8 T cells. Activation (CD25 and HLA-DR) and exhaustion (PD-1) markers on T cells were increased compared with controls, but comparable between COVID-19 severity groups. Non-classical monocytes and monocytic HLA-DR expression decreased whereas monocytic PD-L1 and CD142 expression increased with COVID-19 severity. RNA sequencing exhibited increased plasma B-cell activity in critical COVID-19 and yet predominantly reduced transcripts related to immune response pathways compared with milder disease. CONCLUSION: Critical COVID-19 seems to be characterized by an immune profile of activated and exhausted T cells and monocytes. This immune phenotype may influence the capacity to mount an efficient T-cell immune response. Plasma B-cell activity and calprotectin were higher in critical COVID-19 while most transcripts related to immune functions were reduced, in particular affecting B cells. The potential of these cells as therapeutic targets in COVID-19 should be further explored.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Leukocytes, Mononuclear/immunology , Transcriptome , Adaptive Immunity , Adult , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , HLA-DR Antigens/immunology , Humans , Immunity, Innate , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-7/immunology , Leukocyte L1 Antigen Complex/blood , Male , Middle Aged , Monocytes/immunology , Phenotype , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , Thromboplastin/immunology , Thromboplastin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL